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So far there is no closed formula for relative entropy of entanglement of arbitrary two-qubit
states. In this paper we present a method, which guarantees the derivation of the relative

entropy of entanglement for most states that have z-directional Bloch vectors. It is shown that

the closest separable states for those states also have z-directional Bloch vectors though there are
few exceptions.
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1. Introduction

Research into entanglement of quantum states has a long history from the very

beginning of quantummechanics.1,2 At that time the main motivation for the study of

entanglement was to explore the non-local property of quantum mechanics. Still, this

issue is not completely understood. Recent study on the entanglement is mainly due to

its role as a physical resource for the various quantum information processing such as

teleportation,3 quantum cryptography,4 and speed-up of quantum computer.5

In order to quantify how much a given quantum state is entangled, many

entanglement measures were invented for last two decades. Among them the most

important measure seems to be the distillable entanglement6 because it measures how

a given quantum state is useful in the real quantum information processing with

overcoming the e®ect of the noises via the puri¯cation protocol. In spite of its

importance the analytically derivational technique for it even in the relatively simple

quantum system is not known. In fact, in order to compute the distillable entan-

glement, we should ¯nd an optimal puri¯cation protocol. However, it is a nontrivial

problem to ¯nd the optimal protocol except very rare cases. For this reason many
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people tried to ¯nd more analytically tractable entanglement measures which may be

able to provide information on the tight upper bound of the distillable entanglement.

The representatives constructed in this reason are entanglement of formation (EOF)6

and relative entropy of entanglement (REE).7,8

About a decade ago, Wootters9 found how to compute the EOF for arbitrary two-

qubit states. Although we still do not have closed formula of EOF for higher-

dimensional quantum system, the Wootters' result has great impact in the study of

entanglement. One example for an application of the Wootters' result is to examine

the role of the quantum entanglement in a complex quantum system such as bio-

system.10 Another direction of application is to use the Wootters' result to ¯nd a

truly multipartite entanglement measure. In this way, the three-tangle, measure for

the genuine tripartite entanglement, was invented in Ref. 11.

On the contrary, we still do not have closed formula of the REE even for the two-

qubit states.12 In order to understand the distillable entanglement more profoundly,

therefore, it is worthwhile to investigate the properties of the REE for the various

two-qubit states. In this paper we would like to examine the REE for the states,

which have z-directional Bloch vectors. We present three theorems in the following,

which guarantees that the REE for most such states can be computed analytically or,

at least, numerically.

The REE for state � is de¯ned as

ERð�Þ ¼ min
�2D

Sð�jj�Þ ¼ min
�2D

tr � ln �� � ln�½ �; ð1Þ

whereD is a set of positive partial transpose (PPT) states. For various properties of the

REE see Refs. 13�16. If our concern is restricted into the two-qubit state, it is possible

to regardD as a set of the separable states, because there is no bound entangled state in

the two-qubit Hilbert space. The separable state � in Eq. (1) is called the closest

separable state (CSS) of �. In order for the separable state � to be CSS of some

entangled states it should be edge state in the set D, which means that the smallest

eigenvalue of �� is zero, where the superscript � denotes partial transposition.a

2. Analysis

Although the de¯nition of the REE is comparatively simple, the analytic compu-

tation of it is a highly di±cult problem even for the most simple two-qubit case (see

Chapter 8 of Ref. 12). Since the REE can be straightforwardly computed provided

that the CSS is derived, this means that ¯nding a CSS of the given entangled state is

very di±cult. Recently, however, the authors in Ref. 17 analyzed the converse pro-

cedure. When the edge separable state � is full-rank, they have presented a method

for deriving the entangled state �, whose CSS is �. Still, however, ¯nding a CSS for

the arbitrary entangled state � is an unsolved problem.

aThe converse of this statement, i.e. if � is an edge state in D, there exist entangled states whose CSS are �,

is not generally true.
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In order to explore the issue for ¯nding CSS or REE, authors in Ref. 18 approa-

ched the problem from the geometrical point of view. To explain the main results of

Ref. 18 brie°y it is convenient to express the given entangled state � in a form

� ¼ 1

4
I � I þ r � ¾� I þ I � s � ¾þ

X3

i;j¼1

gij�i � �j

2
4

3
5 ð2Þ

where ¾ is usual Pauli matrices. The vectors r and s are Bloch vectors for each qubit

and the tensor gij represents a correlation between qubits. Since appropriate local-

unitary (LU) transformation for each qubit can make the correlation tensor gij to be

diagonal, it is more convenient, without loss of generality, to express � as

� ¼ 1

4
I � I þ r � ¾� I þ I � s � ¾þ

X3

n¼1

gn�n � �n

" #
: ð3Þ

For example, for the four Bell states

j�1i ¼ 1ffiffiffi
2

p ðj00i þ j11iÞ j�2i ¼
1ffiffiffi
2

p ðj00i � j11iÞ

j�3i ¼ 1ffiffiffi
2

p ðj01i þ j10iÞ j�4i ¼
1ffiffiffi
2

p ðj01i � j10iÞ;
ð4Þ

the Bloch vectors r and s are vanishing and the corresponding correlation vectors

become

g1 ¼ ð1;�1; 1Þ g2 ¼ ð�1; 1; 1Þ g3 ¼ ð1; 1;�1Þ g4 ¼ ð�1;�1;�1Þ: ð5Þ
In Ref. 18 it was shown that if � is one of Bell-diagonal, generalized Vedral-Plenio

(VP) and generalized Horodecki states, its CSS is

� ¼ 1

4
I � I þ r � ¾� I þ I � s � ¾þ

X3

n¼1

�n�n � �n

" #
: ð6Þ

The correlation vector of �, °, can be computed from a fact that the straight line in

the correlation vector space, which connects ° ¼ ð�x; �y; �zÞ and g ¼ ðgx; gy; gzÞ
passes through one of Eq. (5), which is the nearest one from g. Since this fact with the

edge state criterion uniquely determines the correlation vector ° of the CSS, it is

straightforward to compute the REE for the Bell-diagonal, generalized VP and

generalized Horodecki states. For example, let us choose the Bell-diagonal, VP and

Horodecki states as follows:

�B ¼ �1j�1ih�1j þ �2j�2ih�2j þ �3j�3ih�3j þ �4j�4ih�4j
ðmaxð�1; �2; �3; �4Þ ¼ �3Þ

�vp ¼ �1j�3ih�3j þ �2j01ih01j þ �3j10ih10j
�H ¼ �1j�3ih�3j þ �2j00ih00j þ �3j11ih11j:

ð7Þ
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Following Ref. 18 it is easy to show that the corresponding CSS for these states are

�B ¼ �1
2ð1� �3Þ

j�1ih�1j þ
�2

2ð1� �3Þ
j�2ih�2j þ

1

2
j�3ih�3j þ

�4
2ð1� �3Þ

j�4ih�4j

�vp ¼ �1
2

þ �2

� �
j01ih01j þ �1

2
þ �3

� �
j10ih10j

�H ¼ ð�1 þ 2�2Þð�1 þ 2�3Þ
2

j�3ih�3j þ
ð�1 þ 2�2Þ2

4
j00ih00j þ ð�1 þ 2�3Þ2

4
j11ih11j

ð8Þ

and their REE become

Erð�BÞ ¼ �Hð�3Þ þ ln 2

Erð�vpÞ ¼ H
�1
2

þ �2

� �
�Hð�Þ � ¼ 1

2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
1 þ ð�2 � �3Þ2

q� �� �

Erð�HÞ ¼ �1 ln�1 þ �2 ln�2 þ �3 ln�3 þ 2H
�1
2

þ �2

� �
� �1 ln 2

ð9Þ

where HðpÞ � �p ln p� ð1� pÞ lnð1� pÞ. It is worthwhile noting that Erð�vpÞ and

Erð�HÞ are invariant under the exchange of �2 and �3. In fact, one can conjecture this

symmetry from the physical point of view.

In this paper we would like to examine the REE for the two qubit states, whose

Bloch vectors r and s are z-directional. Thus, we assume r ¼ ð0; 0; rÞ and

s ¼ ð0; 0; sÞ. For more simplicity we assume that the ¯rst two components of the

correlation vector g are identical, i.e. gx ¼ gy. Then, the quantum state � can be

written as

� ¼

A1 0 0 0

0 A2 Dei’ 0

0 De�i’ A3 0

0 0 0 A4

0
BBB@

1
CCCA ð10Þ

where

A1 ¼
1þ rþ sþ gz

4
; A2 ¼

1þ r� s� gz
4

; A3 ¼
1� rþ s� gz

4

A4 ¼
1� r� sþ gz

4
; D ¼ gx

2 cos’
� 0:

ð11Þ

We also impose

D2 > A1A4 ð12Þ

to require that � is an entangled state.
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Now we conjecture that the CSS of � is of a form

� ¼

r1 0 0 0

0 r2 yei’ 0

0 ye�i’ r3 0

0 0 0 r4

0
BBB@

1
CCCA ð13Þ

with y ¼ ffiffiffiffiffiffiffiffiffi
r1r4

p � ffiffiffiffiffiffiffiffiffi
r2r3

p
. In the following we will show that most entangled states of

the form (10) have really their CSS as the form (13). However, for extremely

asymmetric states we will show that our conjecture is not true.

If � is really the CSS of �, the following coupled equations should be satis¯ed17:

r1 � x
r1r4

r1 þ r4
¼ A1 ð14aÞ

r4 � x
r1r4

r1 þ r4
¼ A4 ð14bÞ

r2 þ x
2r1r4

ðr1 þ r4Þz2‘
2r1r4‘þ ðr2 � r3Þðr2‘� zÞ½ � ¼ A2 ð14cÞ

r3 þ x
2r1r4

ðr1 þ r4Þz2‘
2r1r4‘� ðr2 � r3Þðr3‘� zÞ½ � ¼ A3 ð14dÞ

yþ x
y

ðr1 þ r4Þz2‘
½2r1r4ðr2 þ r3Þ‘þ ðr2 � r3Þ2z� ¼ D; ð14eÞ

where x is a positive parameter and

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 � r3Þ2 þ 4r1r4

p
‘ ¼ ln

r2 þ r3 þ z

r2 þ r3 � z
: ð15Þ

In this case one can show after tedious calculation that the REE of � becomes

Erð�Þ � trð� ln �Þ � trð� ln �Þ
¼ ðA1 lnA1 þ A4 lnA4 þAþ lnAþ þA� lnA�Þ

� A1 ln r1 þA4 ln r4 þ
A2 þ A3

2
lnðr2r3 � r1r4Þ

�

þ ðA2 �A3Þðr2 � r3Þ þ 4Dy

2z‘�1

�
ð16Þ

where

A� ¼ 1

2
ðA� 2þ A3Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA2 �A3Þ2 þ 4D2

ph i
: ð17Þ

Now we present the following three theorems, which provide the REE and CSS of

the entangled state � given in Eq. (10).

Theorem 1. If A1 ¼ A4 ¼ 0; Erð�Þ becomes

Erð�Þ ¼ HðA2Þ �HðAþÞ:
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Proof. If A1 ¼ A4 ¼ 0, Eqs. (14a) and (14b) give solutions r1 ¼ r4 ¼ �, where � is an

in¯nitesimal positive parameter, which will be taken to be zero after calculation. Then,

the remaining equations in Eq. (14) eventually generate the following solutions:

r2 ¼ A2; r3 ¼ A3; x ¼ 2D

jA2 � A3j
; ln

maxðA2;A3Þ
minðA2;A3Þ

: ð18Þ

Therefore, CSS � in this case is

� ¼ A2j01ih01j þ A3j10ih10j: ð19Þ
Making use of Eq. (16) it is straightforward to compute the REE, which completes the

proof.

As an example of Theorem 1 let us consider

� ¼ pj ih j þ q1j01ih01j þ q2j10ih10j ð20Þ
where pþ q1 þ q2 ¼ 1 and j i ¼ �j01i þ �j10i ðj�j2 þ j�j2 ¼ 1Þ. Then the CSS of � is

� ¼ ðpj�j2 þ q1Þj01ih01j þ ðpj�j2 þ q2Þj10ih10j ð21Þ
and the corresponding REE is

Erð�Þ ¼ Hðpj�j2 þ q1Þ �HðAþÞ ð22Þ
where

A� ¼ 1

2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ðq1 � q2Þ 2pðj�j2 � j�j2Þ þ ðq1 � q2Þf g

q� �
: ð23Þ

When � ¼ � ¼ 1=
ffiffiffi
2

p
, it is easy to show that Eq. (22) reduces to the second equation

of Eq. (9) when �1 ¼ p, �2 ¼ q1 and �3 ¼ q3.

Theorem 2. If both A1 and A4 are not zero, and A2 ¼ A3; the REE of � becomes

Erð�Þ ¼ �1 � �2 ð24Þ
where

�1 ¼ A1 lnA1 þ A4 lnA4 þ ðA2 þDÞ lnðA2 þDÞ þ ðA2 �DÞ lnðA2 �DÞ
�2 ¼ A1 ln r1 þA4 ln r4 þA2 lnðr22 � r1r4Þ þD ln

r2 þ y

r2 � y
:

ð25Þ

In Eq. (25)

r1 ¼ 1

F
½2A1ðA1 þ A2ÞðA1 þ A2 þA4Þ �D2ðA1 � A4Þ þ��

r4 ¼ 1

F
½2A4ðA2 þ A4ÞðA1 þ A2 þA4Þ þD2ðA1 � A4Þ þ��

r2 ¼ 1

F
½2ðA1 þ A2ÞðA2 þ A4ÞðA1 þ A2 þA4Þ �D2ðA1 þ 2A2 þA4Þ ���

ð26Þ
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where y ¼ ffiffiffiffiffiffiffiffiffi
r1r4

p
and

F ¼ 2ðA1 þA2 þ A4 þDÞðA1 þ A2 þ A4 �DÞ
� ¼ D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2ðA1 � A4Þ2 þ 4A1A4ðA1 þA2ÞðA2 þ A4Þ

p
:

ð27Þ

Remark: Under A1 $ A4, r2 is invariant and, r1 and r4 are changed into each other.

This fact indicates that Erð�Þ is invariant under A1 $ A4. The appearance of this

symmetry is plausible from the physical point of view.

Proof. Since both A1 and A4 are not zero, Eqs. (14a) and (14b) enable us to express

r4 and x in terms of r1 as follows:

r4 ¼ r1 � ðA1 � A4Þ; x ¼ ðr1 � A1Þðr1 þ r4Þ
r1r4

: ð28Þ

Since A2 ¼ A3, Eqs. (14c) and (14d) imply r2 ¼ r3. Then inserting r2 ¼ r3 and

Eq. (28) into Eq. (14c), one can express r2 in terms of r1 as follows:

r2 ¼ �r1 þ ðA1 þ A2Þ: ð29Þ
In fact, Eq. (29) can be derived from a normalization r1 þ 2r2 þ r4 ¼ 1. Finally, we

consider Eq. (14e), which reduces to

y2 �Dyþ r2ðr1 � A1Þ ¼ 0: ð30Þ
Thus, one can express y in terms of r1 as a form

y ¼ 1

2
D�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 � 4r2ðr1 � A1Þ

ph i
: ð31Þ

Since y2 ¼ r1r4, one can compute r1 from Eq. (31), which is

r1 ¼
1

F
½2A1ðA1 þ A2ÞðA1 þ A2 þ A4Þ �D2ðA1 � A4Þ ���: ð32Þ

Therefore, one can easily compute r2 and r4 by making use of Eqs. (28) and (29). The

undetermined sign can be ¯xed by Eq. (30). Then, Eq. (16) completes a proof

of Theorem 2.

As an example of Theorem 2, let us consider

� ¼ p1j�3ih�3j þ p2j�4ih�4j þ q1j00ih00j þ q2j11ih11j ð33Þ

with p1 þ p2 þ q1 þ q2 ¼ 1. Then, it is straightforward to show

r1 ¼
2q1ðp1 þ p2 þ 2q1Þðp1 þ p2 þ 2q1 þ 2q2Þ � ðp1 � p2Þ2ðq1 � q2Þ þ 4�

8ðp1 þ q1 þ q2Þðp2 þ q1 þ q2Þ

r2 ¼
ðp1 þ p2 þ 2q1Þðp1 þ p2 þ 2q2Þðp1 þ p2 þ 2q1 þ 2q2Þ � ðp1 � p2Þ2 � 4�

8ðp1 þ q1 þ q2Þðp2 þ q1 þ q2Þ
ð34Þ
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where

� ¼ p1 � p2
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4q1q2ðp1 þ p2 þ 2q1Þðp1 þ p2 þ 2q2Þ þ ðp1 � p2Þ2ðq1 � q2Þ2

p
ð35Þ

and r4 is obtained from r1 by exchanging q1 and q2. Then it is easy to compute the

REE of � by making use of Theorem 2. When p2 ¼ 0, it is also straightforward to

show that the REE of � reduces to third equation of Eq. (9) if one identi¯es �1 ¼ p1,

�2 ¼ q1 and �3 ¼ q2.

Theorem 3. For other cases the CSS of � can be obtained by solving an equation

r2 þ r3 þ z

r2 þ r3 � z
¼ exp

zðr1 �A1Þðr2 � r3Þ2
yðD� yÞz2 � 2r1r4ðr1 � A1Þðr2 þ r3Þ

� �
ð36Þ

where

r4 ¼ r1 � ðA1 �A4Þ
r2 ¼

1

4
½ð4A1 þ 3A2 þA3Þ � 4r1 þ

ffiffiffiffi
�

p
� ð37Þ

r3 ¼
1

4
½ð4A1 þ A2 þ 3A3Þ � 4r1 �

ffiffiffiffi
�

p
�

and

� ¼ 16D
ffiffiffiffiffiffiffiffiffi
r1r4

p � 8ð2A1 þ A2 þA3 þ 2A4Þr1
þ ½ðA2 � A3Þ2 þ 8A1ð2A1 þ A2 þA3Þ�: ð38Þ

Remark 1. If Eqs. (37) and (38) are used, one can make the LHS and RHS of

Eq. (36) in terms of r1 only. Thus, Eq. (36) is an equation with only one variable,

which can be solved analytically or numerically.

Remark 2. If Eq. (37) does not provide a solution for some entangled state �, this

fact indicates that the CSS of � is not of the form (13). In this case, therefore, CSS of �

seems to have di®erent structure from �.

Proof. From Eqs. (14a) and (14b) one can express r4 and x in terms of r1, which is

exactly the same with Eq. (28). The remaining equations in Eq. (14) reduce to

2zðr1 � A1Þðr2 � r3Þ ¼ ‘ ðr2 � A2Þz2 þ 2ðr1 � A1Þ r2ðr2 � r3Þ þ 2r1r4f g� � ð39aÞ

2zðr1 � A1Þðr2 � r3Þ ¼ ‘ ðA3 � r3Þz2 þ 2ðr1 �A1Þ r3ðr2 � r3Þ � 2r1r4f g� � ð39bÞ

2zðr1 � A1Þðr2 � r3Þ ¼ ‘
2yðD� yÞz2 � 4r1r4ðr1 �A1Þðr2 þ r3Þ

r2 � r3
: ð39cÞ

Since the LHS of Eq. (39) are all identical, the RHS of them should be equal. By

equalizing the RHS of Eq. (39a) with the RHS of Eq. (39c) one can derive

ðr2 � r3ÞðA2 � r2Þ þ 2yðD� yÞ � 2r2ðr1 � A1Þ ¼ 0: ð40Þ
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Similarly, one can derive

ðr2 � r3ÞðA3 � r3Þ � 2yðD� yÞ þ 2r3ðr1 � A1Þ ¼ 0 ð41Þ
from Eqs. (39b) and (39c). Adding Eqs. (40) and (41) one can express r2 þ r3 in terms

of r1 in a form

r2 þ r3 ¼ 1� r1 � r4: ð42Þ
In fact, Eq. (42) is a normalization for the CSS �. Combining Eqs. (41) and (42) one

can make the following second degree equation

2r23 þ ½4r1 � ð4A1 þA2 þ 3A3Þ�r3
þ ½A3fð2A1 þ A2 þ A3Þ � 2r1g � 2yðD� yÞ� ¼ 0; ð43Þ

which has roots

r3 ¼
1

4
½ð4A1 þ A2 þ 3A3Þ � 4r1 �

ffiffiffiffi
�

p
�: ð44Þ

Inserting Eq. (44) into Eq. (42), one can express r2 in terms of r1 as a form

r2 ¼
1

4
½ð4A1 þ 3A2 þA3Þ � 4r1 	

ffiffiffiffi
�

p
�: ð45Þ

The undetermined sign in Eqs. (44) and (45) can be ¯xed by Eq. (40). Finally, the

parameter r1 is determined by Eq. (39c), which reduces to Eq. (36). This completes a

proof.

As an example of Theorem 3, let us re-consider the model which was considered by

Rains in Ref. 19, where the entangled state is

� ¼

1

12
0 0 0

0
45907

90000
� 7	

150

1201

3750
þ 49	

3600
0

0
1201

3750
þ 49	

3600

29093

90000
þ 7	

150
0

0 0 0
1

12

0
BBBBBBBBB@

1
CCCCCCCCCA

ð46Þ

with 	 ¼ 1= lnð73=23Þ. Then Eq. (36) directly gives r1 ¼ 1=6 and the resulting CSS of

� is

� ¼

1

6
0 0 0

0
55

144

1

6
0

0
1

6

41

144
0

0 0 0
1

6

0
BBBBBBBBB@

1
CCCCCCCCCA
: ð47Þ

This is in agreement with Rains' result.

Relative Entropy of Entanglement 877



As a second example of Theorem 3 let us consider

� ¼ pj�3ih�3j þ q1j01ih01j þ q2j10ih10j þ q3j00ih00j þ q4j11ih11j ð48Þ
with p ¼ 0:66, q1 ¼ 0:16, q2 ¼ 0:03, q3 ¼ 0:06 and q4 ¼ 0:09. Then, Eq. (36) cannot be

solved analytically. The numerical calculation shows that the CSS is

� ¼ p 0j�3ih�3j þ q 01j01ih01j þ q 02j10ih10j þ q 03j00ijh00j þ q 04j11ih11j ð49Þ
where p 0 ¼ 0:306933, q 01 ¼ 0:252429, q 02 ¼ 0:132241, q 03 ¼ 0:139198 and q 04 ¼
0:169198.

Numerical calculation shows that most entangled states of the form (10) have

their CSS as a form of (13). However, there are states whose CSS are not of the form

(13). For example, the state (48) with p ¼ 0:66, q1 ¼ 0:05, q2 ¼ 0:07, q3 ¼ 0:04 and

q4 ¼ 0:18 does not have CSS of the form (13). It seems to be interesting to derive a

criterion that clari¯es which entangled states � do not have CSS of the form (13).

3. Discussion

We have assumed ab initio that the Bloch vectors of � are z-directional. In addition,

we have assumed that the ¯rst two components of the correlation vector are equal.

These assumptions are chosen only for simplicity. In the near future, we would like to

re-visit the REE problem for two-qubit states by removing these assumptions as

much as possible. This may shed light on the explicit derivation for the closed formula

of REE in the two-qubit system.
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