Tripartite Entanglement-Dependence of Tripartite Non-locality in Non-inertial Frame

DaeKil Park ${ }^{1,2}$
${ }^{1}$ Department of Physics, Kyungnam University, Changwon, 631-701, Korea
${ }^{2}$ Department of Electronic Engineering, Kyungnam University, Changwon, 631-701, Korea

Abstract

The three-tangle-dependence of $S_{\max }=\max \langle S\rangle$, where S is Svetlichny operator, are explicitly derived when one party moves with an uniform acceleration with respect to other parties in the generalized Greenberger-Horne-Zeilinger and maximally slice states. The π-tangle-dependence of $S_{\text {max }}$ are also derived implicitly. The physical implications of quantum mechanical non-locality inferred from these dependence are briefly discussed.

After Einstein-Podolsky-Rosen's seminal paper [1] the unusual properties of the quantum correlations became a fundamental issue in quantum information theories. This unusual properties become manifest if one examines Bell inequality $\langle\mathcal{B}\rangle \leq 2$ [2] by making use of bipartite quantum states. If this inequality is violated. this fact guarantees the nonlocality of quantum mechanics. As Gisin [3] showed, the Bell-type Clauser-Horner-ShimonyHolt (CHSH) [4] inequality is violated for all pure entangled two-qubit states. This fact implies that quantum mechanics really exhibits non-local correlations. More importantly, the amount of violation $\langle\mathcal{B}\rangle-2$ increases when the two-qubit state is entangled more and more. This fact implies that the origin of the non-local correlations in quantum mechanics is an entanglement of quantum states. This remarkable fact can be used to implement the quantum cryptography [5].

Although the relationship between non-locality and entanglement is manifest to a great extent in two-qubit system, it is not straightforward to explore this relationship in multipartite system. Recently, however, understanding in this direction is enhanced little bit, especially in three-qubit system. In Ref. [6] the relationship between Svetlichny inequality [7], the Bell-type inequality in tripartite system, and tripartite residual entanglement called three-tangle [8] was examined by making use of the generalized Greenberger-Horne-Zeilinger (GHZ) states $\left|\psi_{g}\right\rangle$ [9] and the maximally slice (MS) states $\left|\psi_{s}\right\rangle$ [10] defined as

$$
\begin{align*}
\left|\psi_{g}\right\rangle & =\cos \theta_{1}|000\rangle+\sin \theta_{1}|111\rangle \tag{1}\\
\left|\psi_{s}\right\rangle & =\frac{1}{\sqrt{2}}\left[|000\rangle+|11\rangle\left\{\cos \theta_{3}|0\rangle+\sin \theta_{3}|1\rangle\right\}\right]
\end{align*}
$$

The most remarkable fact Re. [6] found is that the τ (three-tangle)-dependence of $S_{\text {max }}$, the upper bound of expectation value of the Svetlichny operator, for $\left|\psi_{g}\right\rangle$ is

$$
S_{m a x}\left(\psi_{g}\right)=\left\{\begin{array}{cc}
4 \sqrt{1-\tau} & \tau \leq 1 / 3 \tag{2}\\
4 \sqrt{2 \tau} & \tau \geq 1 / 3
\end{array}\right.
$$

Since the Svetlichny inequality is $\langle S\rangle \leq 4$, whose violation guarantees the non-local correlations, Eq. (2) shows that $\left|\psi_{g}\right\rangle$ really exhibits non-local correlations in the region $\tau \geq 1 / 2$. Unlike two-qubit states, however, $S_{\max }$ exhibits a decreasing behavior when $\tau \leq 1 / 3$. This fact strongly suggests that the quantum entanglement is not the only resource for the multipartite non-locality. It seems to be greatly important issue to find the other resources, which are responsible for the non-local property of quantum mechanics.

The purpose of this paper is to examine the relationship between tripartite entanglement and $S_{\max }$ in non-inertial frame. Although similar issue was considered recently in Ref.[11], authors in this reference chose only π-tangle [12] as a tripartite entanglement measure. As far as we know, however, there are two different tripartite entanglement measures such as three-tangle [8] and π-tangle [12]. Unlike π-tangle the three-tangle has its own historical background. In fact, it exactly coincides with the modulus of a Cayley's hyperdeterminant [13, 14], which was constructed long ago. It is also polynomial invariant under the local $S L(2, \mathbb{C})$ transformation [15, 16].

Moreover, the calculation of three-tangle for three-qubit mixed states is much more difficult than that of π-tangle. Since three-tangle for mixed state ρ is defined by convex roof method[17, 18]

$$
\begin{equation*}
\tau(\rho)=\min \sum_{j} P_{j} \tau\left(\rho_{j}\right), \tag{3}
\end{equation*}
$$

where minimum is taken over all possible ensembles of pure states ρ_{j} with $0 \leq P_{j} \leq 1$, the explicit computation of three-tangle needs to derive an optimal decomposition of the given mixed state ρ. It causes difficulties in the analytic computation of the three-tangle. Recently, however, various techniques [19-24] were developed to overcome these difficulties. In this paper we use these techniques to derive the relation between the three-tangle and $S_{\max }$ in non-inertial frames.

Now, we assume that Alice, Bob, and Charlie initially share the generalized fermionic GHZ state $\left|\psi_{g}\right\rangle_{A B C}$. We also assume that after sharing his own qubit, Charlie moves with respect to Alice and Bob with a uniform acceleration a. Then, Charlie's vacuum and oneparticle states $|0\rangle_{M}$ and $|1\rangle_{M}$, where the subscript M stands for Minkowski, are transformed into [25]

$$
\begin{align*}
& |0\rangle_{M} \rightarrow \cos r|0\rangle_{I}|0\rangle_{I I}+\sin r|1\rangle_{I}|1\rangle_{I I} \tag{4}\\
& |1\rangle_{M} \rightarrow|1\rangle_{I}|0\rangle_{I I},
\end{align*}
$$

where the parameter r is defined by

$$
\begin{equation*}
\cos r=\frac{1}{\sqrt{1+\exp (-2 \pi \omega c / a)}} \tag{5}
\end{equation*}
$$

and c is the speed of light, and ω is the central frequency of the fermion wave packet ${ }^{1}$. Thus, $r=0$ when $a=0$ and $r=\pi / 4$ when $a=\infty$. In Eq. (4) $|n\rangle_{I}$ and $|n\rangle_{I I}(n=0,1)$ are the mode decomposition in the two causally disconnected regions in Rindler space. Therefore, Eq. (4) implies that the physical information initially formed in region I is leaked into the region $I I$, which is a main story of the Unruh effect [26, 27].

Using Eq. (4) one can easily show that the Charlie's acceleration makes $|\psi\rangle_{A B C}$ to be

$$
\begin{equation*}
|\psi\rangle_{A B C} \rightarrow\left[\cos \theta_{1} \cos r|000\rangle+\sin \theta_{1}|111\rangle\right] \otimes|0\rangle_{I I}+\cos \theta_{1} \sin r|001\rangle \otimes|1\rangle_{I I} \tag{6}
\end{equation*}
$$

where $|\alpha \beta \gamma\rangle \equiv|\alpha \beta\rangle_{A B}^{M} \otimes|\gamma\rangle_{I}$. Since $|\psi\rangle_{I I}$ is a physically inaccessible state from region I, it is reasonable to take a partial trace to average it out. Then, the remaining quantum state becomes the following mixed state:

$$
\begin{align*}
\rho_{A B I} & =\cos ^{2} \theta_{1} \cos ^{2} r|000\rangle\langle 000|+\cos ^{2} \theta_{1} \sin ^{2} r|001\rangle\langle 001|+\sin ^{2} \theta_{1}|111\rangle\langle 111| \tag{7}\\
& +\sin \theta_{1} \cos \theta_{1} \cos r\{|000\rangle\langle 111|+|111\rangle\langle 000|\} .
\end{align*}
$$

The maximum of the expectation value of the Svetlichny operator, $S_{\text {max }}$, for $\rho_{A B I}$ was explicitly derived in Ref.[11], and the final expression can be written as

$$
\begin{equation*}
S_{\max }=4 \max \left[\left|2 \cos ^{2} \theta_{1} \cos ^{2} r-1\right|, \sqrt{2}\left|\sin 2 \theta_{1}\right| \cos r\right] . \tag{8}
\end{equation*}
$$

When $a=0$, Eq. (8) reduces to $S_{\max }=4 \max \left[\left|2 \cos ^{2} \theta_{1}-1\right|, \sqrt{2}\left|\sin 2 \theta_{1}\right|\right]$, which ensures that the violation of the Svetlichny inequality arises when $\pi / 8<\theta_{1}<3 \pi / 8$ in a region $0 \leq \theta_{1} \leq \pi / 2$. When $a=\infty$, Eq. (8) reduces to $S_{\max }=4 \max \left[1-\cos ^{2} \theta_{1}, \sin 2 \theta_{1}\right]$, which shows that there is no violation of the Svetlichny inequality.

Now, we discuss on the tripartite entanglement of $\rho_{A B I}$ given in Eq. (7). The computation of its π-tangle is straightforward and the final expression becomes

$$
\begin{equation*}
\pi_{G G H Z}=\frac{2+\cos ^{2} r}{3} \sin ^{2} 2 \theta_{1}+\frac{1}{3} \cos ^{4} \theta_{1} \sin ^{2} 2 r \tag{9}
\end{equation*}
$$

${ }^{1}$ For bosonic state Eq.(4) is changed into

$$
|0\rangle_{M} \rightarrow \frac{1}{\cosh r} \sum_{n=0}^{\infty} \tanh ^{n} r|n\rangle_{I}|n\rangle_{I I} \quad|1\rangle_{M} \rightarrow \frac{1}{\cosh ^{2} r} \sum_{n=0}^{\infty} \tanh ^{n} r \sqrt{n+1}|n+1\rangle_{I}|n\rangle_{I I},
$$

where

$$
\cosh r=\frac{1}{\sqrt{1-\exp (-2 \pi \omega c / a)}}
$$

When, therefore, $a=0, \pi_{G G H Z}$ becomes $\sin ^{2} 2 \theta_{1}$, which shows that $\left|\psi_{g}\right\rangle$ is maximally entangled at $\theta_{1}=\pi / 4$ and non-entangled at $\theta_{1}=0$ and $\pi / 2$. When $a=\infty$, Eq. (9) reduces to $\pi_{G G H Z}=(5 / 6) \sin ^{2} 2 \theta_{1}+(1 / 3) \cos ^{4} \theta_{1}$, which is maximized by $25 / 27 \sim 0.926$ at $\theta_{1}=\sin ^{-1}(2 / 3)$ and minimized by zero at $\theta_{1}=\pi / 2$. The nonvanishing tripartite entanglement at $a \rightarrow \infty$ limit was discussed in Ref.[28]. This property is a crucial difference from the bosonic bipartite entanglement, which completely vanishes at $a \rightarrow \infty \operatorname{limit}[29]$.

In order to compute the three-tangle it is convenient to use the spectral decomposition of $\rho_{A B I}$, whose expression is

$$
\begin{equation*}
\rho_{A B I}=p|G H Z\rangle\langle G H Z|+(1-p)|001\rangle\langle 001| \tag{10}
\end{equation*}
$$

where $|G H Z\rangle=a|000\rangle+b|111\rangle$ with

$$
\begin{equation*}
p=\cos ^{2} \theta_{1} \cos ^{2} r+\sin ^{2} \theta_{1} \quad a=\frac{\cos \theta_{1} \cos r}{\sqrt{\sin ^{2} \theta_{1}+\cos ^{2} \theta_{1} \cos ^{2} r}} \quad b=\frac{\sin \theta_{1}}{\sqrt{\sin ^{2} \theta_{1}+\cos ^{2} \theta_{1} \cos ^{2} r}} . \tag{11}
\end{equation*}
$$

In order to derive the optimal decomposition we define

$$
\begin{equation*}
|Z(\phi)\rangle=\sqrt{p}|G H Z\rangle+e^{i \phi} \sqrt{1-p}|001\rangle \tag{12}
\end{equation*}
$$

This has several interesting properties. First, $\rho_{A B I}$ given in Eq.(10) can be written as

$$
\begin{equation*}
\rho_{A B I}=\frac{1}{2}[|Z(\phi)\rangle\langle Z(\phi)|+|Z(\phi+\pi)\rangle\langle Z(\phi+\pi)|] . \tag{13}
\end{equation*}
$$

Second, the three-tangle of $|Z(\phi)\rangle$ is independent of ϕ as $\tau_{Z}=4 p^{2} a^{2} b^{2}$. If, therefore, Eq. (13) is an optimal decomposition, the three-tangle of $\rho_{A B I}$ is also $\tau_{A B I}=4 p^{2} a^{2} b^{2}$. Since $\tau_{A B I}$ is convex with respect to p, this fact guarantees that Eq. (13) is really optimal decomposition for $\rho_{A B I}$. Using Eq. (11) it is easy to show

$$
\begin{equation*}
\tau_{A B I}=\sin ^{2} 2 \theta_{1} \cos ^{2} r \tag{14}
\end{equation*}
$$

Therefore, combining Eq. (8) and Eq. (14) we get the explicit three-tangle-dependence of $S_{\text {max }}$ as following;

$$
\begin{equation*}
S_{\max }=4 \max \left[\sqrt{\cos ^{2} r-\tau_{A B I}} \cos r-\sin ^{2} r, \sqrt{2 \tau_{A B I}}\right] . \tag{15}
\end{equation*}
$$

When $a=0$, it is easy to to show that Eq. (21) is reproduced.
In Fig. 1 (a) we plot the three-tangle-dependence of π-tangle when $a=0,2 \omega c, 5 \omega c$, and $10 \omega c$. As expected from a fact that these are two different tripartite entanglement measures,

FIG. 1: (Color online) In (a) we plot the π-tangle (9) versus three-tangle (14). The π-tangle exhibits monotonous behavior with respect to the three-tangle. This fact is plausible because these tangles are two different measures for tripartite entanglement. In (b) and (c) we plot the tripartite entanglement-dependence of $S_{\max }$. These figures show that $S_{\max }$ exhibits a decreasing behavior in the small entanglement region. This fact seems to imply that the entanglement is not unique physical resource for quantum mechanical non-locality.
π-tangle is monotonous with respect to three-tangle. Fig. 1(a) also shows that regardless of acceleration $a \pi$-tangle is larger than three-tangle, which was conjectured in Ref. [12, 23].

$a / \omega c$	0	2	4	6	8	10	100	∞
π_{*}	0.50	0.563	0.70	0.757	0.787	0.806	0.901	1
τ_{*}	1	0.959	0.828	0.740	0.687	0.652	0.566	0.5

Table I: Acceleration dependence of π_{*} and τ_{*}

Fig. 1(b) and Fig. 1(c) show the tripartite entanglement-dependence of $S_{\text {max }}$. As Fig. 1(b) exhibits, the violation of the Svetlichny inequality, i.e. $S_{\max }>4$, occurs when $\pi_{A B I}>$ π_{*}, where π_{*} increases with increasing a. The critical value π_{*} is given in Table I for various a. As Table I shows, π_{*} approaches 1 at $a \rightarrow \infty$ limit, which implies that there is no violation of the Svetlichny inequality in this limit. Fig. $1(\mathrm{c})$ is a plot for the $\tau_{A B I}$-dependence of $S_{\max }$ for various a. As Fig. 1(c) exhibits, the violation of the Svetlichny inequality occurs when $\tau_{A B I}>0.5$ for all a. The maximum of the three-tangle, i.e. τ_{*}, is dependent on Charlie's acceleration a. As Table I shows, τ_{*} exhibits a decreasing behavior with increasing a, and eventually approaches 0.5 in $a \rightarrow \infty$ limit. This fact also indicates that the state shared initially by Alice, Bob, and Charlie cannot have non-local property in the infinite Charlie's acceleration although it has nonzero tripartite entanglement.

If Alice, Bob, and Charlie share initially the MS state $\left|\psi_{s}\right\rangle_{A B C}$, Charlie's acceleration changes $\left|\psi_{s}\right\rangle_{A B C}$ into

$$
\begin{align*}
\sigma_{A B I}=\frac{1}{2}[& \cos ^{2} r|000\rangle\langle 000|+\sin ^{2} r|001\rangle\langle 001|+\cos ^{2} \theta_{3} \cos ^{2} r|110\rangle\langle 110| \tag{16}\\
& \quad+\left(\sin ^{2} \theta_{3}+\cos ^{2} \theta_{3} \sin ^{2} r\right)|111\rangle\langle 111| \\
& +\cos \theta_{3} \cos ^{2} r\{|000\rangle\langle 110|+|110\rangle\langle 000|\}+\sin \theta_{3} \cos r\{|000\rangle\langle 111|+|111\rangle\langle 000|\} \\
& \left.+\cos \theta_{3} \sin ^{2} r\{|001\rangle\langle 111|+|111\rangle\langle 001|\}+\sin \theta_{3} \cos \theta_{3} \cos r\{|110\rangle\langle 111|+|111\rangle\langle 110|\}\right]
\end{align*}
$$

The maximum of $\langle S\rangle=\operatorname{tr}\left[\sigma_{A B I} S\right]$ was explicitly computed in Ref.[11], which has a form

$$
\begin{equation*}
S_{\max }=4\left[\cos ^{2} \theta_{3} \cos ^{2} 2 r+2 \sin ^{2} \theta_{3} \cos ^{2} r\right]^{1 / 2} \tag{17}
\end{equation*}
$$

Thus, $S_{\max } \geq 4$ for $a=0$ and $S_{\max } \leq 4$ for $a=\infty$.
The π-tangle for $\sigma_{A B I}$ can be computed straightforwardly and its final expression is

$$
\begin{equation*}
\pi_{M S}=\frac{1}{3}\left[\sin ^{2} \theta_{3}\left(2+\cos ^{2} r\right)+\sin ^{2} r \cos ^{2} r\left(1+\cos ^{2} \theta_{3}\right)^{2}\right] \tag{18}
\end{equation*}
$$

In order to compute the three-tangle for $\sigma_{A B I}$ we express $\sigma_{A B I}$ in terms of eigenvectors as following:

$$
\begin{equation*}
\sigma_{A B I}=\Lambda_{+}\left|\Psi_{+}\right\rangle\left\langle\Psi_{+}\right|+\Lambda_{-}\left|\Psi_{-}\right\rangle\left\langle\Psi_{-}\right| \tag{19}
\end{equation*}
$$

where

$$
\begin{align*}
& \Lambda_{ \pm}=\frac{1 \pm \sqrt{\Delta}}{2} \tag{20}\\
& \left|\Psi_{ \pm}\right\rangle=\frac{1}{\mathcal{N}_{ \pm}}\left[X_{ \pm}|000\rangle+Y_{ \pm}|001\rangle+Z_{ \pm}|110\rangle+W_{ \pm}|111\rangle\right]
\end{align*}
$$

In Eq. (20) $\Delta=\cos ^{2} \theta_{3}+\cos ^{2} r\left[\sin ^{2} \theta_{3}-\sin ^{2} r\left(1+\cos ^{2} \theta_{3}\right)^{2}\right]$ and

$$
\begin{array}{ll}
X_{ \pm}=\cos r(\mu \pm \sqrt{\Delta}) & Y_{+}=Y_{-}=\sin \theta_{3} \cos \theta_{3} \sin ^{2} r \tag{21}\\
Z_{ \pm}=\cos \theta_{3} X_{ \pm} & W_{ \pm}=\sin \theta_{3}\left(\cos ^{2} r \pm \sqrt{\Delta}\right)
\end{array}
$$

with $\mu=\cos ^{2} r-\sin ^{2} r \cos ^{2} \theta_{3}$. The normalization constants $\mathcal{N}_{ \pm}$are

$$
\begin{align*}
\mathcal{N}_{ \pm}^{2} & =X_{ \pm}^{2}+Y_{ \pm}^{2}+Z_{ \pm}^{2}+W_{ \pm}^{2} \tag{22}\\
& = \pm 2 \sqrt{\Delta}\left[(1+\mu)\left(\cos ^{2} r \pm \sqrt{\Delta}\right)-\sin ^{2} r \cos ^{2} r \cos ^{2} \theta_{3}\left(1+\cos ^{2} \theta_{3}\right)\right]
\end{align*}
$$

Then, it is easy to show $\left\langle\Psi_{+} \mid \Psi_{-}\right\rangle=0$. Now, we define

$$
\begin{equation*}
\left|\Phi_{ \pm}(\varphi)\right\rangle=\sqrt{\Lambda_{+}}\left|\Psi_{+}\right\rangle \pm e^{i \varphi}\left|\Psi_{-}\right\rangle \tag{23}
\end{equation*}
$$

Then, $\sigma_{A B I}$ can be written as

$$
\begin{equation*}
\sigma_{A B I}=\frac{1}{2}\left|\Phi_{+}(\varphi)\right\rangle\left\langle\Phi_{+}(\varphi)\right|+\frac{1}{2}\left|\Phi_{-}(\varphi)\right\rangle\left\langle\Phi_{-}(\varphi)\right| . \tag{24}
\end{equation*}
$$

The three-tangle $\tau\left(\Phi_{ \pm}\right)$for $\left|\Phi_{ \pm}(\varphi)\right\rangle$ are

$$
\begin{equation*}
\tau\left(\Phi_{ \pm}\right)=4\left|\tilde{X}_{ \pm} \tilde{W}_{ \pm}-\tilde{Y}_{ \pm} \tilde{Z}_{ \pm}\right|^{2} \tag{25}
\end{equation*}
$$

where $\tilde{G}_{ \pm}=\sqrt{\Lambda_{+}} G_{+} / \mathcal{N}_{+} \pm e^{i \varphi} \sqrt{\Lambda_{-}} G_{-} / \mathcal{N}_{-}$with $G=X, Y, Z$, or W. If, thus, Eq. (24) is an optimal decomposition for $\sigma_{A B I}$, the three-tangle becomes

$$
\begin{align*}
\tau\left(\sigma_{A B I}\right)= & \frac{4 \Lambda_{+}^{2}}{\mathcal{N}_{+}^{4}}\left(X_{+} W_{+}-Y_{+} Z_{+}\right)^{2}+\frac{4 \Lambda_{-}^{2}}{\mathcal{N}_{-}^{4}}\left(X_{-} W_{-}-Y_{-} Z_{-}\right)^{2} \tag{26}\\
& +\frac{4 \Lambda_{+} \lambda_{-}}{\mathcal{N}_{+}^{2} \mathcal{N}_{-}^{2}}\left\{\left(X_{+} W_{-}+X_{-} W_{+}\right)-\left(Y_{+} Z_{-}+Y_{-} Z_{+}\right)\right\}^{2} \\
& +\frac{8 \Lambda_{+} \lambda_{-}}{\mathcal{N}_{+}^{2} \mathcal{N}_{-}^{2}}\left(X_{+} W_{+}-Y_{+} Z_{+}\right)\left(X_{-} W_{-}-Y_{-} Z_{-}\right) \cos 2 \varphi
\end{align*}
$$

Since $\left(X_{+} W_{+}-Y_{+} Z_{+}\right)\left(X_{-} W_{-}-Y_{-} Z_{-}\right)=\cos ^{2} r \sin ^{4} r \cos ^{4} \theta_{3} \sin ^{6} \theta_{3} \geq 0$, we have to choose $\varphi=\pi / 2$ to minimize $\tau\left(\sigma_{A B I}\right)$. Then, $\tau\left(\sigma_{A B I}\right)$ simply reduces to

$$
\begin{equation*}
\tau\left(\sigma_{A B I}\right)=\cos ^{2} r \sin ^{2} \theta_{3} \tag{27}
\end{equation*}
$$

It is interesting to note that the three-tangle is much simpler than the π-tangle. From Eq. (17) and Eq. (27) one can derive the three-tangle-dependence of $S_{\text {max }}$, which is

$$
\begin{equation*}
S_{\max }=4 \sqrt{\cos ^{2} 2 r+\left(5-4 \cos ^{2} r-\tan ^{2} r\right) \tau\left(\sigma_{A B I}\right)} \tag{28}
\end{equation*}
$$

When $a=0$, Eq. (28) reduces to $S_{\max }=4 \sqrt{1+\tau\left(\sigma_{A B I}\right)}$. Thus, the violation of the Svetlichny inequality occurs for all nonzero three-tangle. When $a=\infty$, Eq. (28) reduces to $S_{\text {max }}=4 \sqrt{2 \tau\left(\sigma_{A B I}\right)}$, which implies $\tau\left(\sigma_{A B I}\right) \leq 1 / 2$ in the infinite limit.

FIG. 2: (Color online) In (a) we plot the π-tangle (18) versus three-tangle (27). As Fig. 1(a) the π-tangle exhibits monotonous behavior with respect to the three-tangle. Regardless of acceleration a the π-tangle is larger than the three-tangle, which might be true generally as conjectured in Ref.[12, 23]. In (b) and (c) we plot the tripartite entanglement-dependence of $S_{\text {max }}$. Unlike Fig. 1(b) and Fig. 1(c) the decreasing behavior of $S_{\max }$ in small entanglement region disappears.

In Fig. 2(a) we plot the three-tangle-dependence of π-tangle for $\sigma_{A B I}$ when $a=0,2 \omega c$, $5 \omega c$, and $10 \omega c$. Like Fig. 1(a) the π-tangle (18) is monotonous with respect to the threetangle (27). Fig. 2(a) also indicates that π-tangle is in general larger than three-tangle. In Fig. 2(b) and Fig. 2(c) we plot the tripartite entanglement-dependence of $S_{\max }$. Unlike Fig. 1(b) and Fig. 1(c) there is no decreasing behavior of $S_{\max }$ in these figures. From Fig. 2(b) and Fig. 2(c) we know that π_{c} and τ_{c} increase with increasing a if the violation of the Svetlichny inequality occurs when $\pi_{M S}>\pi_{c}$ and $\tau\left(\sigma_{A B I}\right)>\tau_{c}$. These critical values are given in Table II for various a. Table II shows that $\pi_{c} \rightarrow 1$ and $\tau_{c} \rightarrow 0.5$ in the infinite acceleration limit.

$a / \omega c$	0	2	4	6	8	10
π_{c}	0	0.191	0.250	0.685	0.746	0.780
τ_{c}	0	0.142	0.385	0.456	0.479	0.488

Table II: Acceleration dependence of π_{c} and τ_{c}

If Bob moves, instead of Charlie, with an uniform acceleration, the initial state $|\psi\rangle_{A B C}$ is transformed into

$$
\begin{gather*}
\sigma_{A I C}=\frac{1}{2}\left[\cos ^{2} r|000\rangle\langle 000|+\sin ^{2} r|010\rangle\langle 010|+\cos ^{2} \theta_{3}|110\rangle\langle 110|+\sin ^{2} \theta_{3}|111\rangle\langle 111|\right. \tag{29}\\
+\cos r \cos \theta_{3}\{|000\rangle\langle 110|+|110\rangle\langle 000|\}+\cos r \sin \theta_{3}\{|000\rangle\langle 111|+|111\rangle\langle 000|\} \\
\left.+\sin \theta_{3} \cos \theta_{3}\{|110\rangle\langle 111|+|111\rangle\langle 110|\}\right]
\end{gather*}
$$

The maximum of $\langle S\rangle=\operatorname{tr}\left[\sigma_{A I C} S\right]$ was given in Ref. [11], which is

$$
\begin{equation*}
S_{\max }=4 \cos r\left[\cos ^{2} \theta_{3}+2 \sin ^{2} \theta_{3}\right]^{1 / 2} \tag{30}
\end{equation*}
$$

The π-tangle for $\sigma_{A I C}$ can be straightforwardly computed and the final expression is

$$
\begin{equation*}
\tilde{\pi}_{M S}=\frac{1}{3}\left[1+\sin ^{2} \theta_{3}-\cos ^{2} r \cos 2 \theta_{3}+\sin ^{2} r \cos 2 r+\sin ^{2} r \sqrt{\sin ^{4} r+4 \cos ^{2} r \cos ^{2} \theta_{3}}\right] . \tag{31}
\end{equation*}
$$

By similar method one can compute the three-tangle for $\sigma_{A I C}$, which is exactly the same with $\tau\left(\sigma_{A B I}\right)$ given in Eq. (27). Therefore, the three-tangle-dependence of $S_{\max }$ in this case is

$$
\begin{equation*}
S_{\max }=4 \sqrt{\cos ^{2} r+\tau\left(\sigma_{A I C}\right)} \tag{32}
\end{equation*}
$$

Eq. (32) implies that the violation of the Svetlichny inequality arises for all nonzero $\tau\left(\sigma_{\text {AIC }}\right)$ when $a=0$. It also implies that $\tau\left(\sigma_{A I C}\right) \leq 1 / 2$ when $a \rightarrow \infty$ limit because $S_{\max } \leq 4$ in this limit.

In this paper we have examined the tripartite entanglement-dependence of $S_{\max }=$ $\max \langle S\rangle$, where S is the Svetlichny operator, when one party moves with an uniform acceleration a with respect to other parties. If the initial tripartite state is the generalized GHZ state $\left|\psi_{g}\right\rangle_{A B C}$, the three-tangle-dependence of $S_{\max }$ is analytically derived in Eq. (15). As Fig. 1 shows, $S_{\max }$ exhibits a decreasing behavior in the small tripartite entanglement region while it exhibits a increasing behavior in the large tripartite entanglement region. This fact seems to suggest that the tripartite entanglement is not the only physical resource for the tripartite non-locality. If initial state is the MS state $\left|\psi_{s}\right\rangle_{A B C}$, the explicit relations between $S_{\text {max }}$ and three-tangle are derived in Eq. (28) and Eq. (32). In this case the decreasing behavior of $S_{\max }$ disappears as Fig. 2 shows. The a-dependence of the critical values $\pi_{*}, \tau_{*}, \pi_{c}$, and τ_{c} is summarized in Table I and Table II.

It seems to be interesting to generalize our results to the tripartite bosonic cases [28]. In this case, however, it is highly difficult to compute $S_{\max }$ in non-inertial frame because the acceleration of one party transforms the qubit system at $a=0$ into a qudit system for nonzero a. As Eq. (8), Eq. (17), and Eq. (30) show, the violation of the Svetlichny inequality does not occur in $a \rightarrow \infty$ limit[30] even if the tripartite entanglement does not completely vanish in this limit. This fact suggests that although there is some connection between the tripartite non-locality and the tripartite entanglement, the entanglement is not unique resource for the non-locality. Then, what are other physical resources, which are responsible for the non-locality of quantum mechanics? As far as we know, we do not have definite answer so far. We will keep on studying this issue in the future.

Acknowledgement: This work was supported by the Kyungnam University Foundation Grant, 2011.
[1] A. Einstein, B. Podolsky and N. Rosen, Can quantum-mechanical description of physical reality be considered complete?, Phys. Rev. 47 (1935) 777.
[2] J. S. Bell, On the Einstein-Podolsky-Rosen Paradox, Physics, 1 (1964) 195.
[3] N. Gisin, Bell's inequality holds for all non-product states, Phys. Lett. A 154 (1991) 201.
[4] J. F. Clauser, M. A. Horne, A. Shimony and R. A. Holt, Proposed experiment to test local hidden-variable theories, Phys. Rev. Lett. 23 (1969) 880.
[5] A. K. Ekert, Quantum cryptography based on Bells theorem, Phys. Rev. Lett. 67 (1991) 661.
[6] S. Ghose, N. Sinclair, S. Debnath, P. Rungta, and R. Stock, Tripartite Entanglement versus Tripartite Nonlocality in Three-Qubit Greenberger-Horne-Zeilinger-Class States, Phys. Rev. Lett. 102 (2009) 250404.
[7] G. Svetlichny, Distinguishing three-body from two-body nonseparability by a Bell-type inequality, Phys. Rev. D 35 (1987) 3066.
[8] V. Coffman, J. Kundu and W. K. Wootters, Distributed entanglement, Phys. Rev. A 61 (2000) 052306.
[9] W. Dür, G. Vidal, and J. I. Cirac, Three qubits can be entangled in two inequivalent ways, Phys. Rev. A 62 (2000) 062314.
[10] H. A. Carteret and A. Sudbery, Local symmetry properties of pure three-qubit states, J. Phys. A 33 (2000) 4981.
[11] A. Smith and R. B. Mann, Persistence of Tripartite Nonlocality for Non-inertial observers, arXiv:1107.4633 [quant-ph].
[12] Y. U. Ou and H. Fan, Monogamy inequality in terms of negativity for three-qubit states, Phys. Rev. A 75 (2007) 062308.
[13] A. Cayley, On the Theory of Linear Transformations, Cambridge Math. J. 4 (1845) 193.
[14] A. Miyake, Classification of multipartite entangled states by multidimensional determinants, Phys. Rev. A 67 (2003) 012108.
[15] F. Verstraete, J. Dehaene and B. D. Moor, Normal forms and entanglement measures for multipartite quantum states, Phys. Rev. A 68 (2003) 012103.
[16] M. S. Leifer, N. Linden and A. Winter, Measuring polynomial invariants of multiparty quantum states, Phys. Rev. A 69 (2004) 052304.
[17] C. H. Bennett, D. P. DiVincenzo, J. A. Smokin and W. K. Wootters, Mixed-state entanglement and quantum error correction, Phys. Rev. A 54 (1996) 3824.
[18] A. Uhlmann, Fidelity and concurrence of conjugate states, Phys. Rev. A 62 (2000) 032307.
[19] R. Lohmayer, A. Osterloh, J. Siewert and A. Uhlmann, Entangled Three-Qubit States without Concurrence and Three-Tangle, Phys. Rev. Lett. 97 (2006) 260502.
[20] C. Eltschka, A. Osterloh, J. Siewert and A. Uhlmann, Three-tangle for mixtures of generalized GHZ and generalized W states, New J. Phys. 10 (2008) 043014.
[21] E. Jung, M. R. Hwang, D. K. Park and J. W. Son, Three-tangle for Rank-3 Mixed States: Mixture of Greenberger-Horne-Zeilinger, W and flipped W states, Phys. Rev. A 79 (2009) 024306.
[22] E. Jung, D. K. Park, and J. W. Son, Three-tangle does not properly quantify tripartite entanglement for Greenberger-Horne-Zeilinger-type state, Phys. Rev. A 80 (2009) 010301(R).
[23] E. Jung, M. R. Hwang, D. K. Park, and S. Tamaryan, Three-Party Entanglement in Tripartite Teleportation Scheme through Noisy Channels, Quant. Inf. Comp. 10 (2010) 0377.
[24] G. J. He, X. H. Wang, S. M. Fei, H. X. Sun, and Q. Y. Wen, Three-tangle for high-rank mixed states, Commun. Theor. Phys. 55 (2011) 251.
[25] P. M. Alsing, I. Fuentes-Schuller, R. B. Mann, and T. E. Tessier, Entanglement of Dirac fields in noninertial frames, Phys. Rev. A 74 (2006) 032326.
[26] W. G. Unruh, Notes on black-hole evaporation, Phys. Rev. D 14 (1976) 870.
[27] N. D. Birrel and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, England, 1982).
[28] M. R. Hwang, D. K. Park, and E. Jung, Tripartite entanglement in a noninertial frame, Phys. Rev. A 83 (2011) 012111.
[29] I. Fuentes-Schuller and R. B. Mann, Alice Falls into a Black Hole: Entanglement in Noninertial Frames, Phys. Rev. Lett. 95 (2005) 120404.
[30] N. Friis, P. Köhler, E. Martín-Martínez, and R. A. Bertlmann, Residual entanglement of accelerated fermions is not nonlocal, Phys. Rev. A 84 (2011) 062111.

